Empowered by Innovation



#### Order-Preserving Encryption Secure Beyond One-Wayness

#### Isamu Teranishi (NEC)

Moti Yung (Google, Columbia University) Tal Malkin (Columbia University)

### Order Preserving Encryption (OPE)

#### Secret Key Encryption Scheme s.t.

- Plaintext and Ciphertext Spaces are intervals of the set of integers.
- It satisfies the order-preserving property:

### m < m' ⇔ Enc<sub>K</sub>(m) < Enc<sub>K</sub>(m')



#### Application

OPE can be used in encrypted outsourced database

(Range Query) Because OPE enables one to find documents m satisfying

#### a<m<b

without decrypting ciphertexts.

In fact, due to the order-pres. property, one can find such m by checking whether

 $Enc_{K}(a) < Enc_{K}(m) < Enc_{K}(b)$ 

holds or not.



NEC

#### Subject and Results of This Paper

However, security of OPE is far from being understood at this time.

In fact, a naturally defined indistinguishability notion (IND-O-CPA) cannot be achievable (under some natural condition) [1].

In this paper we tackle the following fundamental problem for OPE: what exactly must OPE leak?, and what can it hide?

And we show a positive results for it:

 Define a weaker indistinguishability notion, (X,T,q)-IND, for OPE than the known (unachievable) one while the known result[2]is about one-wayness

•the notion is natural in the database setting mentioned before.

•the notion can ensure that secrecy of lower bits of plaintext.

Propose a new OPE scheme satisfying our indistinguishability notion.

[1] Boldyreva, Chenette, Lee, O'Neill: Order-Preserving Symmetric Encryption. EUROCRYPT 2009: 224-241

# Our Definition of Indistiguishability Notion Our Results Construction of Our scheme Security Proof



# Our Definition of Indistiguishability Notion Our Results Construction of Our scheme Security Proof



#### Review of (r,q+1)-WOW (Window-OneWay)

Our security notion is obtained by modifying the following known one-way based notion, (r,q+1)-WOW [2]



#### $\forall A \text{ (polytime) } Pr[m^* \in I] \leq neg(Mess. Sp. Size)$

[2] Boldyreva, Chenette, O'Neill: Order-Preserving Encryption Revisited: Improved Security Analysis and Alternative Solutions, CRYPTO 2011: 578-595

#### Our notion (**X**,T,q)-IND

Here  $X = (X_1, ..., X_a)$  be a tuple of (indep.) distributions on the Mess. Sp.



∀Mg (polytime) whose output satisfies |m\*[0]-m\*[1]| <T ∀ A (polytime) |Pr[d=b]-1/2| ≤ neg(Mess. Sp. Size)

#### Why |m\*[0]-m\*[1]| <T ?

In our def., we require a message generator Mg to output (m\*[0],m\*[1]) satisfying

#### |m\*[0]-m\*[1]| <T

This is because otherwise, an OPE is broken easily

using the following idea [1]:

The order-pres. property

 $m < m' \Longrightarrow Enc_{K}(m) < Enc_{K}(m')$ 

means that  $Enc_{K}$  is monotone increasing.

 Hence, if we allow an adversary to select (m\*[0],m\*[1]) such that m\*[1] –m\*[0]

is large, the difference

```
Enc<sub>K</sub>(m*[1])-Enc<sub>K</sub>(m*[0])
```

has to become noticeably large.

Therefore the adversary can distinguish Ene (m\*[0]) and Ene (m\*[1]) assily

#### Property of (X,T,q)-IND

Our (**X**,T,q)-IND implies that the least significant log T bits of a plaintext are hidden from the adversary in our database setting.

Proof (rough idea)

Consider the following two messages:

m\*[0] : any message

m\*[1] : lower log T bits are selected randomly

and the other bits are the same as those of m\*[0]

Then, it holds that

|m\*[0]-m\*[1]| < T,

which is our condition for (**X**,R,q)-IND.

Hence,  $Enc_{K}(m^{*}[0])$  is indis. from  $Enc_{K}(m^{*}[1])$ .

Recall that the lower log T bits of m\*[1] is random.

This means that an adversary given  $Enc_{K}(m^{*}[0])$  cannot know the lower log T bits of m<sup>\*</sup>[0].

### Our Definition of Indistiguishability Notion Our Results Construction of Our scheme Security Proof



Very roughly, we construct an OPE scheme such that

**Main Thm.(informal)** if min-entropies of  $X_1,...,X_q$  are large, our scheme is (X,T,q)-IND for a large T. (Here  $X = (X_1,...,X_q)$ .)

To formalize the above statement, we give some def.

- The min-entropy of random variable X<sub>i</sub> on a Mess. Sp. is
  - $H_{\infty}(\boldsymbol{X}_{i}) := \min \left\{ -\log \Pr[\boldsymbol{X}_{i}=m] \mid m \in \text{Mess. Sp.} \right\}$
- It is known that the min-entropy of  $X_i$  has to less than that of **Unif** on Mess. Sp:

$$H_{\infty}(\mathbf{X}_{i}) \leq H_{\infty}(\mathbf{Unif}) \ (= \log \#(\text{Mess. Sp.}))$$

• So we define "*normalized*" min-entropy of **X** as follows:

$$H^* \,_{\scriptscriptstyle \infty}(\boldsymbol{X}_i) \; := H \,_{\scriptscriptstyle \infty}(\boldsymbol{X}_i) \, / \, H \,_{\scriptscriptstyle \infty}(\boldsymbol{\text{Unif}}) \leq 1$$

for a tuple X=(X<sub>1</sub>,...,X<sub>q</sub>) of random variables, we also define



#### Our Result (Formal)

Ve construct an OPE scheme  $E[\alpha, \beta]$  satisfying the following property:

```
Main Thm (Formal):

For a tuple of (indep) rand. variable \mathbf{X} = (\mathbf{X}_1, ..., \mathbf{X}_q) satisfying

H^*_{\infty}(\mathbf{X}) > \beta,

our scheme \mathbb{E}[\alpha, \beta] satisfies

(\mathbf{X}, \mathbf{M}^{\alpha}, \mathbf{q})-IND

for any 0 < \alpha < \beta.
```

Here M is Mess. Sp.Size.

Our scheme is based on a PRF and the above result holds under security of PRF.



#### Corollaries

Recall that our  $(\mathbf{X}, M^{\alpha}, q)$ -IND can hide lower bits of a plaintext Hence, the following corollaries hold (under the same assumption as above).

**Corollary**: Our scheme  $E[\alpha, \beta]$  can hide fraction  $\alpha$  of lower bits of plaintexts for any  $\alpha < \beta$  satisfying  $\beta < H^*_{\infty}(\mathbf{X})$ .

In particular, if **X** is a tuple of the **Unif** distributions, it follows that

**Corollary**: Our scheme  $E[\alpha, 1]$  can hide any fraction of lower bits of plaintexts.



#### (r,q+1)-WOW of Our Scheme.

We can show the following fact as well:

**Theorem**: (**Unif**<sup>9</sup>,T,q)-IND implies (r,q+1)-WOW for suitable r.

In particular, we can conclude the following corollary:

Corollary: Our scheme satisfies (M<sup>s</sup>,q+1)-WOW for any 0<s<1

In the case of the known scheme [1], it is shown that

the known scheme is (1,q+1)-WOW

but it is *not* ( $M^{s}$ ,q+1)-WOW for s > 1/2.

Hence, our scheme achieve (r,q+1)-WOW for better parameter r than the known scheme [1].



### Our Definition of Indistiguishability Notion Our Results

#### Construction of Our scheme

#### Security Proof



#### Construction (1/4)

We construct our scheme in the following two steps:

First, we construct a scheme

•which satisfies our  $(\mathbf{X}, M^{\alpha}, q)$ -IND without assuming any computational assumption.

- But the enc. and dec. of this scheme requires super-polytime
- → Today we talk about this scheme
- Second, we improve the above scheme
- •Here we use the "lazy sampling" technique [2],
- So we use a PRF
- •and the security of this scheme is based on PRF.
- •The scheme achieves poly-time enc. and dec. costs.
- → See our paper for this scheme



#### Construction (2/4)

```
For an encryption function Enc<sub>K</sub>, we let
R := Enc<sub>K</sub>(0)
D[i] := Enc<sub>K</sub>(i) – Enc<sub>K</sub>(i-1)
```

Then we can write  $Enc_{\kappa}(m)$  as follows:  $Enc_{\kappa}(m) = R + \sum_{i=1}^{m} D[i].$ 

Therefore, a design of Enc<sub>K</sub> can be reduced to the selections of R and D[i].



#### Construction (3/4)

How to select D[i]:

we set  $D[i] \leftarrow small$  value with high probability,

but set it to a "large random value" with low probability.

Specifically,

- Let p be a "small" fixed value.
- Take a coin r[i] which becomes 1 with high prob 1-p.

•if (r[i] = 1)

•D[i]  $\leftarrow$  small value (say, 1).

Otherwise,

where L = large value (say, 2<sup>poly(SecParam)</sup>)

#### We take a value R in a similar manner



#### Then we set Key K $\leftarrow$ (R,D[1],...,D[M]), (Here Mess.Sp={0,...,M}) Enc<sub>K</sub>(m) $\leftarrow$ R + $\Sigma_{i=1}^{m}$ D[i].

But the problems are that,

when the Mess. Sp. size M is super-polynomial of SecParam,

- •the above key K is *not* polysize
- the above Enc<sub>K</sub> is *not* polytime

So, finally, we improve the above scheme using "lazy sampling" technique [1].

We omit the explanation of this final part. See our paper.



## Our Definition of Indistiguishability Notion Our Results Construction of Our scheme Security Proof



Proof)

Consider the Mess. Sp. ={1...M}

- Due to the def. of (X,M<sup>α</sup>,q)-IND, messages m\*[0] and m\*[1] of the challenge have to be within the distance T=M<sup>α</sup>.
- Since  $\alpha < 1$ , the distance T=M<sup> $\alpha$ </sup> is small compare to M (when M $\rightarrow \infty$ )
- Recall that we consider the case where components of X has high min-



Recall that we take D[i] as follows:

- with high probability  $D[i] \leftarrow small$  value.
- with small probability D[i] becomes large random value.





Similarly, even if an adversary tries to know b from  $Enc_{K}(m_{l}) - Enc_{K}(m^{*}[b])$  (for  $m_{l} > m^{*}[1]$ ), he cannot know it due to a similar reason.



#### Conclusion

OPE is very powerful for encrypted database

- but so far, security for it is poorly understood beyond just onewayness the encryption
- We proposed a new indistinguishability notion for OPE.
- This notion can ensure secrecy of lower bits of a plaintext.
- We construct a new OPE scheme which satisfies our new ind. notion.
- In some application hidden lower bits is significant security property like physical measurement, may be trade secret.

Many question are remaining open.



#### Thank you

